Interfacial fluorescence sensor proves respiratory supercomplex formation in situ
نویسندگان
چکیده
منابع مشابه
Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells
The assembly of respiratory complexes into macromolecular supercomplexes is currently a hot topic, especially in the context of newly available structural details. However, most work to date has been done with purified detergent-solubilized material and in situ confirmation is absent. We here set out to enable the recording of respiratory supercomplex formation in living cells. Fluorescent sens...
متن کاملStructure of Mammalian Respiratory Supercomplex I1III2IV1
The mammalian respiratory chain complexes assemble into supercomplexes (SCs) and reside in the inner mitochondrial membrane to transfer electrons and establish the proton gradient for complex V to synthesize ATP. The precise arrangement of SCs is largely unknown. Here, we report a 4.0-Å cryo-electron microscopy (cryo-EM) structure of the major SC in porcine heart, the 1.7-MDa SCI1III2IV1. The c...
متن کامل“Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes
Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2-11. In the cou...
متن کاملCell Type-Specific Modulation of Respiratory Chain Supercomplex Organization
Respiratory chain complexes are organized into large supercomplexes among which supercomplex In + IIIn + IVn is the only one that can directly transfer electrons from NADH to oxygen. Recently, it was reported that the formation of supercomplex In + IIIn + IVn in mice largely depends on their genetic background. However, in this study, we showed that the composition of supercomplex In + IIIn + I...
متن کاملThe Respiratory Chain Supercomplex Organization Is Independent of COX7a2l Isoforms
The organization of individual respiratory chain complexes into supercomplexes or respirasomes has attracted great interest because of the implications for cellular energy conversion. Recently, it was reported that commonly used mouse strains harbor a short COX7a2l (SCAFI) gene isoform that supposedly precludes the formation of complex IV-containing supercomplexes. This claim potentially has se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochimica et Biophysica Acta (BBA) - Bioenergetics
سال: 2016
ISSN: 0005-2728
DOI: 10.1016/j.bbabio.2016.04.269